
1

Two challenges for building large
self-organizing overlay networks

Jorg Liebeherr

University of Virginia

Two issues in multicast overlay networks

1. Why do we keep on proposing overlay networks for
multicast?

2. Why is it difficult to write application programs for
overlay network?

2

Applications with many receivers

Number
of Receivers

Number
of Senders

Streaming
Software

Distribution

10 1,000

1

1,000,000

10

1,000

1,000,000

Collaboration
Tools

Games

Peer-to-Peer
Applications

Sensor
networks

Multicast support in the network
infrastructure (IP Multicast)

• IP Multicast problems:
– Deployment has encountered severe scalability limitations in both the

size and number of groups that can be supported
– IP Multicast is still plagued with concerns pertaining to scalability,

network management, deployment and support for error, flow and
congestion control

3

Overlay Multicasting

• Logical overlay resides on top of the Layer-3 network
• Data is transmitted between neighbors in the overlay
• No network support needed
• Overlay topology should match the Layer-3 infrastructure

Overlay-based approaches for multicasting

• Build an overlay mesh network and embed trees into the mesh:
– Narada (CMU)
– RMX/Gossamer (UCB)
– many more

• Build a shared tree:
– Yallcast/Yoid (NTT, ACIRI)
– AMRoute (Telcordia, UMD – College Park)
– Overcast (MIT)
– many more

• Build an overlay using distributed hash tables (DHT) and embed trees:
– Chord (UCB, MIT)
– CAN (UCB, ICIR)
– Pastry (Rice, MSR)
– many more

4

Own Approach

• Build overlay network as a graph with known properties
– N-dimensional (incomplete) hypercube (1997-1999)

– Delaunay triangulation (1999-2002)

– Spanning tree

hypercube

Delaunay
triangulation

What is the best overlay?

Evaluation criteria:

1. Properties of the overlay graph

2. Mapping of the overlay to the
layer-3 network

3. Properties of protocol that
maintains the overlay topology

5

1. Properties of the overlay graph

• Number of neighbors (routing table size)
– Many DHTs, hypercubes: O(log N) (max.)
– Triangulation graphs: O(N) (max.), 6 (avg.)
– Meshes, trees: no a priori bound, but bounds can be enforced

• Path lengths in the overlay
– Many DHTs, hypercubes: O(log N) (max.)
– Triangulation graphs: O(N) (max.), O(√N) (best case avg.)
– Meshes, trees: no a priori bound

2. Mapping of the overlay to the layer-3 network

• Compare overlay multicast to network-layer multicast:
“Relative Delay Penalty”: Ratio of delay to shortest path delay
“Stress”: Number of duplicate transmissions over a physical link

• Overlays that provide a good mapping to need to be aware of the
underlying layer-3 network

6

Illustration of “Stress” and “Relative Delay Penalty”

AA

BBStress = 2

Stress = 2

Relative delay
penalty for A B: 1.5

1 1

1 1

Unicast delay A B : 4

1
1 1

1

1

1

Delay A B in overlay: 6

Transit-Stub Network

Transit-Stub
• GA Tech topology

generator
• 4 transit domains
• 4×16 stub domains
• 1024 total routers
• 128 hosts on stub

domain

7

90th Percentile of Relative Delay Penalty

Triangulations

Hypercube

6-degree
mesh

Trees

90th Percentile of “Stress”

Triangulations

Hypercube

6-degree
mesh

Trees

8

3. Properties of overlay protocol

• Measures:
– How fast does a self-organizing protocol converge?
– How does protocol behavior change when

• … the size of overlay network grows (scalability)?
• …. the multicast group is highly dynamic?

• Example: Delaunay Triangulation protocol

Measurement Experiments

• Experimental Platform:
Centurion cluster at UVA (cluster of 300 Linux PCs)
– 2 to 10,000 overlay members
– 1–100 members per PC

• Overlay topology: Delaunay triangulation with random
coordinate assignments

Switch 8

Switch 9

Switch 11

Switch 10

Switch 4

Switch 5

Switch 6

Switch 7

Switch 3

Internet

centurion149-167centurion183
centurion253-255

centurion246
centurion250
centurion251

centurion249
centurion252

centurion168-182
centurion164-187

centurion188-211

centurion228-247centurion128-147

Gigabit Ethernet

9

How long does it take to add M members to an overlay network
of N members ?

Experiment with Delaunay Triangulation:
Time to complete an overlay network

M+N members

Ti
m

e
to

 C
om

pl
et

e
(s

ec
)

Economy-of-scale versus increased scalability

Best use of network resources
requires good mapping of overlay
network to layer-3 network
(which in turn requires measurements
or awareness of layer-3 network)
Interferes with the ability of building
overlay graphs with good a priori
bounds
Generally, increases convergence
times of the protocols
Limits the ability of a protocol to
support very large groups

Overlay networks that have good
a priori bounds and overlay
protocols that scale to very large
groups generally ignore the layer-3
network

can lead to a poor match to the layer-3
network
can lead to poor use of resources

• No best solution, but a trade-off
• Achieve scalability by trading off economy of scale
• Design space given by this trade-off is still not well understood

10

Programming overlay networks
• Research focuses on the design of protocols to maintain

and forward data in an overlay network
• Less attention is put on building application programs in

such an environment

• Overlay network programming is the software
development process of building application programs
that communicate with one another in an application-layer
overlay network

Application programming interfaces (APIs) for
overlay networks

• Many overlay network protocols do not shield API from
overlay network protocol

• Notable exceptions:
– Socket-based API: Yoid, Scattercast
– API for DHT overlays: F. Dabek et. al. (IPTPS 03)
– Rendezvous based abstractions: I3 (by Stoica et. al.)

• Also:
– JXTA: abstractions for P2P applications

11

Our work: Overlay Sockets

An overlay socket provides a socket-based API:

1. Does not require knowledge of the overlay network topology
2. Accommodates different overlay network topologies
3. Accommodates different types of transport layer protocols

(TCP, UDP, UDP multicast)
4. Provides mechanisms for bootstrapping new overlay

networks

Structure of an Overlay Socket

• Transport services
in peer networks

• Socket-based API

• UDP, TCP, UDP multicast

• Different transport
service semantics

• Implementation in Java

• Software available from:
www.cs.virginia.edu/hypercast

Overlay
Socket

Forwarding Engine Message Store

Overlay Socket Interface

S
ta

ti
st

ic
s

In
te

rf
ac

e

Messages of
the Overlay
Protocol

Application
Receive
Buffer

Application
Transmit

Buffer

Overlay Node

Overlay Node
Interface

Node Adapter

Adapter Interface

Socket Adapter

Adapter Interface

Application
Messages

Application Program

Network

12

Overlay Socket: Data Exchange

• Each overlay socket has two communication ports:
1. Protocol to manage the overlay (overlay protocol)
2. Data transfer

Data transfer

Overlay protocol
Overlay protocolData transfer

Overlay protocol

Data transfer

Unicast and Multicast in overlays

Root
(sender)

Root
(receiver)

Multicast Unicast• Unicast and multicast is done
using trees that are
embedded in the overlay
network.

• Requirement: Overlay node
must be able to compute the
child nodes and parent node
with respect to a given root

13

Overlay Message Format

 1 2 3
 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
 +-------+---------------+---+---+-------------------------------+
 |Version|LAS|Dmd| Traffic Class | Flow Label | Next Header |
 +-------+---------------+---+---+-------------------------------+
 | OL Message Length | Hop Limit |
 +-------------------------------+-------------------------------+
 | Src LA |
 +---
 | Dest LA |
 +---+

• Common Header:

Version (4 bit): Version of the protocol (current Version is 0x0)
LAS (2 bit): Size of logical address field
Dmd (4bit) Delivery Mode (Multicast, Flood, Unicast, Anycast)
Traffic Class (8 bit): Specifies Quality of Service class (default: 0x00)
Flow Label (8 bit): Flow identifier
Next Header (8 bit) Specifies the type of the next header following this header
OL Message Length (8 bit) Specifies the type of the next header following this header.
Hop Limit (16 bit): TTL field
Src LA ((LAS+1)*4 bytes) Logical address of the source
Dest LA ((LAS+1)*4 bytes Logical address of the destination

Loosely modeled after IPv6
minimal header with extensions

Property File

This is the Hypercast Configuration File
#

LOG FILE:
LogFileName = stderr

ERROR FILE:
ErrorFileName = stderr

OVERLAY Server:
OverlayServer =

OVERLAY ID:
OverlayID = 224.228.19.78/9472
KeyAttributes = Socket,Node,SocketAdapter

SOCKET:
Socket = HCast2-0
HCAST2-0.TTL = 255
HCAST2-0.ReceiveBufferSize = 200
HCAST2-0.ReadTimeout = 0

. . .

This is the Hypercast Configuration File
#

LOG FILE:
LogFileName = stderr

ERROR FILE:
ErrorFileName = stderr

OVERLAY Server:
OverlayServer =

OVERLAY ID:
OverlayID = 224.228.19.78/9472
KeyAttributes = Socket,Node,SocketAdapter

SOCKET:
Socket = HCast2-0
HCAST2-0.TTL = 255
HCAST2-0.ReceiveBufferSize = 200
HCAST2-0.ReadTimeout = 0

. . .

SOCKET ADAPTER:
SocketAdapter = TCP
SocketAdapter.TCP.MaximumPacketLength = 16384
SocketAdapter.UDP.MessageBufferSize = 100

NODE:
Node = HC2-0
HC2-0.SleepTime = 400
HC2-0.MaxAge = 5
HC2-0.MaxMissingNeighbor = 10
HC2-0.MaxSuppressJoinBeacon = 3

NODE ADAPTER:
#
NodeAdapter = UDPMulticast

NodeAdapter.UDP.MaximumPacketLength = 8192
NodeAdapter.UDP.MessageBufferSize = 18
NodeAdapter.UDPServer.UdpServer0 = 128.143.71.50:8081
NodeAdapter.UDPServer.MaxTransmissionTime = 1000
NodeAdapter.UDPMulticastAddress = 224.242.224.243/2424

SOCKET ADAPTER:
SocketAdapter = TCP
SocketAdapter.TCP.MaximumPacketLength = 16384
SocketAdapter.UDP.MessageBufferSize = 100

NODE:
Node = HC2-0
HC2-0.SleepTime = 400
HC2-0.MaxAge = 5
HC2-0.MaxMissingNeighbor = 10
HC2-0.MaxSuppressJoinBeacon = 3

NODE ADAPTER:
#
NodeAdapter = UDPMulticast

NodeAdapter.UDP.MaximumPacketLength = 8192
NodeAdapter.UDP.MessageBufferSize = 18
NodeAdapter.UDPServer.UdpServer0 = 128.143.71.50:8081
NodeAdapter.UDPServer.MaxTransmissionTime = 1000
NodeAdapter.UDPMulticastAddress = 224.242.224.243/2424

• Stores attributes that configure the overlay socket (overlay protocol,
transport protocol and addresses)

14

Data transfer

Overlay protocol Overlay protocol

Data transfer

Overlay socket: Bootstrap

Overlay
server

store
parameters

1st

Configuration file

- Overlay protocol
- TCP or UDP
- etc.

Configuration file

- Overlay protocol
- TCP or UDP
- etc.

load
parameters

2nd

get
parameters

Configuration file

- Overlay protocol
- TCP or UDP
- etc.

Configuration file

- Overlay protocol
- TCP or UDP
- etc.

Overlay ID

Overlay ID ?

load
parameters

Data transfer

Overlay protocol Overlay protocol

Data transfer

Overlay socket : Bootstrap
(without Overlay server)

1st

Configuration file

- Overlay ID
- Overlay protocol
- TCP or UDP
- etc.

Configuration file

- Overlay ID
- Overlay protocol
- TCP or UDP
- etc.

load
parameters

2nd

Configuration file

- Overlay ID
- Overlay protocol
- TCP or UDP
- etc.

Configuration file

- Overlay ID
- Overlay protocol
- TCP or UDP
- etc.

load
parameters

15

Socket Based API

//Generate the configuration object
OverlayManager om = new OverlayManager(“hypercast.prop”);
String overlayID = om.getDefaultProperty(“MyOverlayID")
OverlaySocketConfig config = new
om.getOverlaySocketConfig(overlayID);

//create an overlay socket
OL_Socket socket = config.createOverlaySocket(callback);

//Join an overlay
socket.joinGroup();

//Create a message
OL_Message msg = socket.createMessage(byte[] data, int length);

//Send the message to all members in overlay network
socket.sendToAll(msg);

//Receive a message from the socket
OL_Message msg = socket.receive();

//Extract the payload
byte[] data = msg.getPayload();

//Generate the configuration object
OverlayManager om = new OverlayManager(“hypercast.prop”);
String overlayID = om.getDefaultProperty(“MyOverlayID")
OverlaySocketConfig config = new
om.getOverlaySocketConfig(overlayID);

//create an overlay socket
OL_Socket socket = config.createOverlaySocket(callback);

//Join an overlay
socket.joinGroup();

//Create a message
OL_Message msg = socket.createMessage(byte[] data, int length);

//Send the message to all members in overlay network
socket.sendToAll(msg);

//Receive a message from the socket
OL_Message msg = socket.receive();

//Extract the payload
byte[] data = msg.getPayload();

• Tries to stay close to Socket API for UDP Multicast
• Program is independent of overlay topology

Hypercast Software: Demo Applications

Distributed Whiteboard Multicast file transfer

Data aggregation in P2P
Net: CS757 Homework

16

More advanced application: Emergency
Response Network

by B. Horowitz
and S. Patek
(Univ. of Virginia,
SIE Dept)

